Forecasting extreme atmospheric events with a recurrence-interval-analysis-based autoregressive conditional duration model
نویسندگان
چکیده
منابع مشابه
Forecasting of Interval-valued Crude Oil Prices with Autoregressive Conditional Interval Models
Crude oil is a highly strategic commodity. This paper investigates the necessity of using interval data and interval econometric models for crude oil price forecasting. Compared to the traditional point-valued data, interval-valued data in a time period contain much more valuable information which is useful for market participant to make decisions. We develop three autoregressive conditional in...
متن کاملAutoregressive Conditional Duration Model with an Extended Weibull Error Distribution
Trade duration and daily range data often exhibit asymmetric shape with long right tail. In analysing the dynamics of these positively valued time series under autoregressive conditional duration (ACD) models, the choice of the conditional distribution for innovations has posed challenges. A suitably chosen distribution, which is capable of capturing unique characteristics inherent in these dat...
متن کاملmortality forecasting based on lee-carter model
over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...
15 صفحه اولA (semi-)parametric Functional Coefficient Autoregressive Conditional Duration Model
In this paper, we propose a class of ACD-type models that accommodates overdispersion, intermittent dynamics, multiple regimes, and sign and size asymmetries in financial durations. In particular, our functional coefficient autoregressive conditional duration (FC-ACD) model relies on a smooth-transition autoregressive specification. The motivation lies on the fact that the latter yields a unive...
متن کاملA Method of Short-term Wind Speed Forecasting Based on Generalized Autoregressive Conditional Heteroscedasticity Model
In order to improve the safety of train operation, a short-term wind speed forecasting method is proposed based on a linear recursive autoregressive integrated moving average (ARIMA) algorithm and a non-linear recursive generalized autoregressive conditionally heteroscedastic (GARCH) algorithm (ARIMA-GARCH). Firstly, the non-stationarity embedded in the original wind speed data is pre-processed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2018
ISSN: 2045-2322
DOI: 10.1038/s41598-018-34584-4